11 People Results for the Tag: Self Assembly

All A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Melik Demirel

Huck Chair in Biomimetic Materials; Pearce Professor of Engineering
Prof. Dr. Melik Demirel holds a tenured professor position in engineering at Penn State, and has a decade of experience in biosensors and nanomaterials. Prof. Demirel’s achievements have been recognized, in part, through his receipt of a Young Investigator Award, an Alexander von Humboldt Fellowship, an Institute for Complex Adaptive Matter Junior Fellowship, the Pearce Development Professorship at Penn State, a Boeing Distinguished Speaker Award. Prof. Demirel received his Ph.D. from Carnegine Mellon University and B.S. and M.S. degrees from Bogazici University.

Andrew Read

Director, Huck Institutes of the Life Sciences; Evan Pugh Professor of Biology and Entomology; Eberly Professor of Biotechnology
The ecology and evolutionary genetics of infectious disease.

Center for Infectious Disease Dynamics

Yong Wang

Professor of Biomedical Engineering
Applying nature and biology as design guidelines to the creation of biomimetic and bioinspired materials at both the nanoscale and macroscale level for drug delivery, clinical diagnosis, and regenerative medicine.

Center for Infectious Disease Dynamics

Scott Medina

Associate Professor of Biomedical Engineering
Design of bio-inspired functional materials that serve as new tools in precision medicine. Understanding how peptides and proteins assemble at natural and non-natural interfaces to form organized structures with unique biochemical functions. The design of nano- and micro-scale biomaterials to develop new biosensing and therapeutic strategies to treat infectious disease, inflammation and cancer.

Thomas Neuberger

Director, High Field Magnetic Resonance Imaging Facility; Associate Research Professor

Sung Hyun Cho

Assistant Research Professor, Cryo-Electron Microscopy Core Facility

Amir Sheikhi

Assistant Professor of Chemical Engineering
Micro- and nanoengineered soft materials for medicine and the environment; microfluidic-enabled biomaterials for tissue engineering and regeneration; living materials; next-generation bioadhesives, tissue sealants, and hemostatic agents; hydrogels for minimally invasive medical technologies; self-healing and adaptable soft materials; smart coatings; hairy nanocelluloses as an emerging family of advanced materials.