9 People Results for the Tag: Cellulose Synthase
Daniel Cosgrove
Eberly Chair and Professor of Biology
Mechanism of plant growth. Function and evolution of expansins. Biochemistry and rheology of plant cell walls. Growth responses to light, hormones, and water stress and other stimuli.
Teh-hui Kao
Chair, Intercollege Graduate Degree Program in Plant Biology; Distinguished Professor of Biochemistry and Molecular Biology
Molecular, biochemical, and structural bases of the S-RNase-based self-incompatibility system in flowering plants. F-box protein-mediated ubiquitination and degradation of proteins.
B. Tracy Nixon
Professor of Biochemistry and Molecular Biology
Structural and functional basis of cellulose synthesis. Using Physcomitrella patens and other organisms as model systems, we are learning how plants make cellulose for building new cell wall. The studies use methods of molecular biology and cryoEM to characterize the enzyme as a monomer, and when it assembles into its larger 'Cellulose Synthase Complex '(CSC for short). The aim is to understand cellulose synthesis to explain fundamentals of cell wall biology in plants, and to enable manipulation of its synthesis for applications in fields of bioenergy and materials.
Ming Tien
Professor of Biochemistry & Molecular Biology
Characterization and biochemical analysis of cellulose synthesis in a variety of organisms. Mechanism and regulation of fungal degradation of lignin. Dissimilatory Iron reduction.
Ying Gu
Associate Professor of Biochemistry and Molecular Biology
Mechanism of cellulose biosynthesis in higher plants. Genetic modification of plant cell wall to scale-up biofuel production.
Charles Anderson
Co-Director, Center for Biorenewables; Associate Professor of Biology
In vivo imaging of plant cell wall dynamics. Molecular genetic analysis of genes involved in cell growth. Cell wall biosynthesis in dividing cells. Cell wall engineering for sustainable bioenergy production.