Susan Hafenstein

Director of the Center for Structural Biology; Huck Chair of Structural Virology; Professor of Biochemistry and Molecular Biology

Susan Hafenstein

Research Summary

Using a structural approach to learn more about viral infectivity, tropism, evolution and pathogenicity. Developing approaches to visualize critical events that cause a break from the regular symmetry of the virus, including packaging of the genome, receptor usage, antibody interactions and uncoating of the viral genome during the final stages of infection.

Huck Graduate Students

Huck Affiliations

Links

Publication Tags

Viruses Capsid Enterovirus Neutralizing Antibodies Epitopes Mutation Antibodies Receptors Proteins Cryoelectron Microscopy Cryo Electron Microscopy Lipids Dogs Infection Ribonucleases Immunoglobulin Fragments Ribonucleoproteins Canine Parvovirus Capsid Proteins Human Papillomavirus 16 Rna Neoplasms Amino Acids Genome Cells

Most Recent Publications

Jiarong Ye, Yin Ting Yeh, Yuan Xue, Ziyang Wang, Na Zhang, He Liu, Kunyan Zhang, Rye Anne Ricker, Zhuohang Yu, Allison Roder, Nestor Perea Lopez, Lindsey Organtini, Wallace Greene, Susan Hafenstein, Huaguang Lu, Elodie Ghedin, Mauricio Terrones, Shengxi Huang, Sharon Xiaolei Huang, 2022, Proceedings of the National Academy of Sciences of the United States of America

Asymmetry in icosahedral viruses

Joyce Jose, Susan L. Hafenstein, 2022, Current Opinion in Virology

Daniel J. Goetschius, Samantha R. Hartmann, Suriyasri Subramanian, Carol M. Bator, Neil D. Christensen, Susan L. Hafenstein, 2021, Scientific Reports

Samantha R. Hartmann, Daniel J. Goetschius, Jiafen Hu, Joshua J. Graff, Carol M. Bator, Neil D. Christensen, Susan L. Hafenstein, 2021, Viruses

Daniel J. Goetschius, Samantha R. Hartmann, Lindsey J. Organtini, Heather Callaway, Kai Huang, Carol M. Bator, Robert E. Ashley, Alexander M. Makhov, James F. Conway, Colin R. Parrish, Susan L. Hafenstein, 2021, Proceedings of the National Academy of Sciences of the United States of America

Yu Chi Chen, Saketh S. Dinavahi, Qilong Feng, Raghavendra Gowda, Srinivasa Ramisetti, Xinghai Xia, Kyle B. LaPenna, Venkat R. Chirasani, Sung Hyun Cho, Susan L. Hafenstein, Madhu Babu Battu, Arthur Berg, Arun K. Sharma, Tom Kirchhausen, Nikolay V. Dokholyan, Shantu Amin, Pingnian He, Gavin P. Robertson, 2021, Cancer Letters on p. 107-119

Nadia M. DiNunno, Daniel J. Goetschius, Anoop Narayanan, Sydney A. Majowicz, Ibrahim Moustafa, Carol M. Bator, Susan L. Hafenstein, Joyce Jose, 2020, Nature Communications

Anna Perederina, Di Li, Hyunwook Lee, Carol Bator, Igor Berezin, Susan L. Hafenstein, Andrey S. Krasilnikov, 2020, Nature Communications

Matthew D. Lauver, Daniel J. Goetschius, Colleen S. Netherby-Winslow, Katelyn N. Ayers, Ge Jin, Daniel G. Haas, Elizabeth L. Frost, Sung Hyun Cho, Carol M. Bator, Stephanie M. Bywaters, Neil D. Christensen, Susan L. Hafenstein, Aron E. Lukacher, 2020, eLife on p. 1-68

Belén Martínez-Gualda, Liang Sun, Olaia Martí-Marí, Sam Noppen, Rana Abdelnabi, Carol M. Bator, Ernesto Quesada, Leen Delang, Carmen Mirabelli, Hyunwook Lee, Dominique Schols, Johan Neyts, Susan Hafenstein, María José Camarasa, Federico Gago, Ana San-Félix, 2020, Journal of Medicinal Chemistry on p. 349-368

Most-Cited Papers

Kristin L. Shingler, Jennifer L. Yoder, Michael S. Carnegie, Robert E. Ashley, Alexander M. Makhov, James F. Conway, Susan Hafenstein, 2013, PLoS Pathogens

Yorihiro Nishimura, Hyunwook Lee, Susan Hafenstein, Chikako Kataoka, Takaji Wakita, Jeffrey M. Bergelson, Hiroyuki Shimizu, 2013, PLoS Pathogens on p. e1003511

Antonio V. Bordería, Ofer Isakov, Gonzalo Moratorio, Rasmus Henningsson, Sonia Agüera-González, Lindsey Organtini, Nina F. Gnädig, Hervé Blanc, Andrés Alcover, Susan Hafenstein, Magnus Fontes, Noam Shomron, Marco Vignuzzi, 2015, PLoS Pathogens

Hyunwook Lee, Javier O. Cifuente, Robert E. Ashley, James F. Conway, Alexander M. Makhov, Yoshio Tano, Hiroyuki Shimizu, Yorihiro Nishimura, Susan Hafenstein, 2013, Journal of Virology on p. 11363-11370

Hyunwook Lee, Sarah A. Brendle, Stephanie M. Bywaters, Jian Guan, Robert E. Ashley, Joshua D. Yoder, Alexander M. Makhov, James F. Conway, Neil D. Christensen, Susan Hafenstein, 2015, Journal of Virology on p. 1428-1438

Jian Guan, Stephanie M. Bywaters, Sarah A. Brendle, Hyunwook Lee, Robert E. Ashley, Alexander M. Makhov, James F. Conway, Neil Christensen, Susan Hafenstein, 2015, Virology on p. 253-263

Karla M. Stucker, Israel Pagan, Javier O. Cifuente, Jason T. Kaelber, Tyler D. Lillie, Susan Hafenstein, Edward C. Holmes, Colin R. Parrish, 2012, Journal of Virology on p. 1514-1521

Andrew B. Allison, Lindsey J. Organtini, Sheng Zhang, Susan L. Hafenstein, Edward C. Holmes, Colin R. Parrish, 2016, Journal of Virology on p. 753-767

Lindsey J. Organtini, Alexander M. Makhov, James F. Conway, Susan Hafenstein, Steven D. Carsonc, 2014, Journal of Virology on p. 5755-5765

News Articles Featuring Susan Hafenstein

First round of funded projects announced from the Benkovic Research Initiative

Four projects have been announced as recipients of funding from the Patricia and Stephen Benkovic Research Initiative, which supports risky, highly innovative investigation at the interface of chemistry and the life sciences.

New images of canine parvovirus may help predict how virus jumps to new species

​Canine parvovirus (CPV) is a highly infectious pathogen that causes severe diseases in unvaccinated dogs, including inflammation of the heart and acute gastrointestinal illness. Originating in cats, the virus is a rare example of a DNA-based virus that can jump between species, and a team of researchers’ discovery may help in predicting this and the virus’ ability to evolve, which could have implications for current vaccines used in dogs.

Altered 'coat' disguises fatal brain virus from neutralizing antibodies

A genetic modification in the ‘coat’ of a brain infection-causing virus may allow it to escape antibodies, according to Penn State College of Medicine researchers.

Scientists pinpoint how the deadly canine parvovirus learned to infect dogs in the 1970s

Canine parvovirus, a highly contagious and deadly virus of dogs, initially infected cats and other animals long before it acquired a few mutations and started a worldwide epidemic in the late 1970s. Now, a team led by the Baker Institute’s Dr. Colin Parrishhave worked with Dr. Susan Hafenstein’s laboratory at Penn State University to show exactly how parvovirus enters canine cells, and it’s a surprisingly wobbly interaction.

Virus may jump species through 'rock-and-roll' motion with receptors

Like a janitor thumbing through a keychain to find just the right key to open a lock, the "rock-and-roll" motion of the canine parvovirus during the binding process may help explain how the virus can find the spot on a receptor to infect not just dogs, but multiple species, according to an international team of researchers.

Resolution Revolution: Penn State welcomes a new era of atomic-level imaging with cryo EM facility

Using extreme cold to arrest fluid samples in motion, cryo EM allows researchers to see proteins, clusters of molecules, and viruses with astounding clarity—to the point where individual atoms may become visible.

Scientists discover weakness in common cold virus

An indentation on the surface of the viruses that cause a multitude of illnesses, including the common cold, has been discovered. Scientists believe this vulnerability marks a weak spot on the viruses that antiviral medications could target to administer effective treatment for colds and polio, among other illnesses

A tiny crater on viruses behind the common cold may be their Achilles’ heel

A newly discovered indentation on the surface of viruses that cause many illnesses, including the common cold, could be their Achilles’ heel — and a possible target for effective drugs.