Howard Salis

Associate Professor of Chemical Engineering; Associate Professor of Agricultural and Biological Engineering

Howard Salis

Research Summary

Engineering microorganisms for applications in synthetic biology and metabolic engineering.

Huck Affiliations

Links

Publication Tags

Proteins Messenger Rna Kinetics Bacteria Rna Ribosomes Enzymes Gene Expression Biosynthesis Riboswitch Nadp Genes Rna Folding Networks (Circuits) Engineering Binding Sites Plasmids Protein Biosynthesis Metabolic Networks And Pathways Operon Metabolic Engineering Terpenes Cell Growth Nucleotide Aptamers Resources

Most Recent Papers

Controlling Heterogeneity and Increasing Titer from Riboswitch-Regulated Bacillus subtilis Spores for Time-Delayed Protein Expression Applications

Denis Tamiev, Alyssa Lantz, Grace Vezeau, Howard Salis, Nigel F. Reuel, 2019, ACS Synthetic Biology on p. 2336-2346

RNA size and 3-dimensional structure determine ultrafiltration behavior of small RNA molecules

Ivan Manzano, Grace Vezeau, Howard Salis, Andrew Zydney, 2019, Separation and Purification Technology on p. 116372

A Canonical Biophysical Model of the CsrA Global Regulator Suggests Flexible Regulator-Target Interactions

A. N. Leistra, G. Gelderman, S. W. Sowa, A. Moon-Walker, Howard M. Salis, L. M. Contreras, 2018, Scientific reports

Precise quantification of translation inhibition by mRNA structures that overlap with the ribosomal footprint in N-terminal coding sequences

Amin Espah Borujeni, Daniel Cetnar, Iman Farasat, Ashlee Smith, Natasha Lundgren, Howard M. Salis, 2017, Nucleic acids research on p. 5437-5448

Translation Initiation is Controlled by RNA Folding Kinetics via a Ribosome Drafting Mechanism

Amin Espah Borujeni, Howard M. Salis, 2016, Journal of the American Chemical Society on p. 7016-7023

Automated physics-based design of synthetic riboswitches from diverse RNA aptamers

Amin Espah Borujeni, Dennis M. Mishler, Jingzhi Wang, Walker Huso, Howard M. Salis, 2016, Nucleic acids research on p. 1-13

A Biophysical Model of CRISPR/Cas9 Activity for Rational Design of Genome Editing and Gene Regulation

Iman Farasat, Howard Salis, 2016, PLoS Computational Biology on p. e1004724

A portable expression resource for engineering cross-species genetic circuits and pathways

Manish Kushwaha, Howard M. Salis, 2015, Nature communications

Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration

Chiam Yu Ng, Iman Farasat, Costas D. Maranas, Howard M. Salis, 2015, Metabolic engineering on p. 86-96

A predictive biophysical model of translationalcoupling to coordinate and control protein expressionin bacterial operons

Tian Tian, Howard M. Salis, 2015, Nucleic acids research on p. 7137-7151

Most-Cited Papers

Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites

Amin Espah Borujeni, Anirudh S. Channarasappa, Howard M. Salis, 2014, Nucleic acids research on p. 2646-2659

The ribosome binding site calculator

Howard M. Salis, 2011, Methods in enzymology on p. 19-42

Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria

Iman Farasat, Manish Kushwaha, Jason Collens, Michael Easterbrook, Matthew Guido, Howard M. Salis, 2014, Molecular Systems Biology

Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration

Chiam Yu Ng, Iman Farasat, Costas D. Maranas, Howard M. Salis, 2015, Metabolic engineering on p. 86-96

Automated physics-based design of synthetic riboswitches from diverse RNA aptamers

Amin Espah Borujeni, Dennis M. Mishler, Jingzhi Wang, Walker Huso, Howard M. Salis, 2016, Nucleic acids research on p. 1-13

A portable expression resource for engineering cross-species genetic circuits and pathways

Manish Kushwaha, Howard M. Salis, 2015, Nature communications

A predictive biophysical model of translationalcoupling to coordinate and control protein expressionin bacterial operons

Tian Tian, Howard M. Salis, 2015, Nucleic acids research on p. 7137-7151

Translation Initiation is Controlled by RNA Folding Kinetics via a Ribosome Drafting Mechanism

Amin Espah Borujeni, Howard M. Salis, 2016, Journal of the American Chemical Society on p. 7016-7023

Precise quantification of translation inhibition by mRNA structures that overlap with the ribosomal footprint in N-terminal coding sequences

Amin Espah Borujeni, Daniel Cetnar, Iman Farasat, Ashlee Smith, Natasha Lundgren, Howard M. Salis, 2017, Nucleic acids research on p. 5437-5448

A Canonical Biophysical Model of the CsrA Global Regulator Suggests Flexible Regulator-Target Interactions

A. N. Leistra, G. Gelderman, S. W. Sowa, A. Moon-Walker, Howard M. Salis, L. M. Contreras, 2018, Scientific reports