Ethan Xingyuang Fang

Assistant Professor of Statistics

Ethan Xingyuang Fang

Publication Tags

These publication tags are generated from the output of this researcher. Click any tag below to view other Huck researchers working on the same topic.

Testing Longitudinal Data Chemical Analysis Test Statistic Gradient Methods Confidence Interval High Dimensional Optimization Problem Randomized Trial Descent Hazard Function Robustness O Glcnac Transferase Linear Programming Proportional Hazards Model Fairness Optimization Trend Obesity Hypothesis Testing Fats High Dimensional Data Bandit Problems Type I Error Estimator

Most Recent Publications

Michael Rosenblum, Xingyuan Fang, H Liu, Journal of Royal Statistical Society: Series B

High-dimensional Interactions Detection with Sparse Principal Hessian Matrix

Cheng Yong Tang, Xingyuan Fang, Yuexiao Dong, Journal of Machine Learning Research

Robust matrix estimations meet Frank–Wolfe algorithm

Naimin Jing, Ethan X. Fang, Cheng Yong Tang, 2023, Machine Learning on p. 2723-2760

Yue Liu, Ethan X. Fang, Junwei Lu, 2023, Operations Research on p. 202-223

Deep Spatial Q-Learning for Infectious Disease Control

Zhishuai Liu, Jesse Clifton, Eric B. Laber, John Drake, Ethan X. Fang, 2023, Journal of Agricultural, Biological, and Environmental Statistics

Yi Chen, Yining Wang, Ethan X. Fang, Zhaoran Wang, Runze Li, 2022, Journal of the American Statistical Association

Ethan X. Fang, Zhaoran Wang, Lan Wang, 2022, Journal of the American Statistical Association

Michael Rosenblum, Ethan X. Fang, Han Liu, 2020, Journal of the Royal Statistical Society. Series B: Statistical Methodology on p. 749-772

IMPLICIT BIAS OF GRADIENT DESCENT BASED ADVERSARIAL TRAINING ON SEPARABLE DATA

Yan Li, Huan Xu, Tuo Zhao, Ethan X. Fang, 2020,

Ethan X. Fang, Yang Ning, Runze Li, 2020, Annals of Statistics on p. 2622-2645

Most-Cited Papers

Mengdi Wang, Ethan X. Fang, Han Liu, 2017, Mathematical Programming on p. 419-449

Ethan X. Fang, Bingsheng He, Han Liu, Xiaoming Yuan, 2015, Mathematical Programming Computation on p. 149-187

Min Dian Li, Nicholas B. Vera, Yunfan Yang, Bichen Zhang, Weiming Ni, Enida Ziso-Qejvanaj, Sheng Ding, Kaisi Zhang, Ruonan Yin, Simeng Wang, Xu Zhou, Ethan X. Fang, Tian Xu, Derek M. Erion, Xiaoyong Yang, 2018, Nature Communications

Accelerating Stochastic Composition Optimization

Mengdi Wang, Ji Liu, Ethan X. Fang, 2017, Journal of Machine Learning Research on p. 1-23

Ethan X. Fang, Yang Ning, Han Liu, 2017, Journal of the Royal Statistical Society. Series B: Statistical Methodology on p. 1415-1437

Accelerating stochastic composition optimization

Mengdi Wang, Ji Liu, Ethan X. Fang, 2016, Advances in Neural Information Processing Systems on p. 1722-1730

Shuoguang Yang, Mengdi Wang, Ethan X. Fang, 2019, SIAM Journal on Optimization on p. 616-659

Ethan X. Fang, Yang Ning, Runze Li, 2020, Annals of Statistics on p. 2622-2645

IMPLICIT BIAS OF GRADIENT DESCENT BASED ADVERSARIAL TRAINING ON SEPARABLE DATA

Yan Li, Huan Xu, Tuo Zhao, Ethan X. Fang, 2020,

Using a distributed SDP approach to solve simulated protein molecular conformation problems

Xingyuan Fang, Kim Chuan Toh, 2013, on p. 351-376