Ethan Xingyuang Fang
Assistant Professor of Statistics

-
421B Thomas
University Park, PA - xxf13@psu.edu
- 814-865-3235
Links
Publication Tags
These publication tags are generated from the output of this researcher. Click any tag below to view other Huck researchers working on the same topic.
Chemical Analysis Randomized Trial Linear Programming Testing Estimator High Dimensional Optimization Gradient Methods Confidence Interval Optimization Problem Test Statistic Hazard Function O Glcnac Transferase Proportional Hazards Model Longitudinal Data Obesity Hypothesis Testing Fats Fairness Bandit Problems Numerical Experiment Robustness Type I Error Gradient Method BrainMost Recent Publications
High-dimensional Interactions Detection with Sparse Principal Hessian Matrix
Cheng Yong Tang, Xingyuan Fang, Yuexiao Dong, Journal of Machine Learning Research
Optimal, two‐stage, adaptive enrichment designs for randomized trials, using sparse linear programming
Michael Rosenblum, Xingyuan Fang, H Liu, Journal of Royal Statistical Society: Series B
Lagrangian Inference for Ranking Problems
Yue Liu, Ethan X. Fang, Junwei Lu, 2023, Operations Research on p. 202-223
Robust matrix estimations meet Frank–Wolfe algorithm
Naimin Jing, Ethan X. Fang, Cheng Yong Tang, 2023, Machine Learning
Fairness-Oriented Learning for Optimal Individualized Treatment Rules
Ethan X. Fang, Zhaoran Wang, Lan Wang, 2022, Journal of the American Statistical Association
Nearly Dimension-Independent Sparse Linear Bandit over Small Action Spaces via Best Subset Selection
Yi Chen, Yining Wang, Ethan X. Fang, Zhaoran Wang, Runze Li, 2022, Journal of the American Statistical Association
Optimal, two-stage, adaptive enrichment designs for randomized trials, using sparse linear programming
Michael Rosenblum, Ethan X. Fang, Han Liu, 2020, Journal of the Royal Statistical Society. Series B: Statistical Methodology on p. 749-772
IMPLICIT BIAS OF GRADIENT DESCENT BASED ADVERSARIAL TRAINING ON SEPARABLE DATA
Yan Li, Huan Xu, Tuo Zhao, Ethan X. Fang, 2020,
Test of significance for high-dimensional longitudinal data
Ethan X. Fang, Yang Ning, Runze Li, 2020, Annals of Statistics on p. 2622-2645
High-dimensional interactions detection with sparse principal hessian matrix
Cheng Yong Tang, Ethan X. Fang, Yuexiao Dong, 2020, Journal of Machine Learning Research
Most-Cited Papers
Stochastic compositional gradient descent: algorithms for minimizing compositions of expected-value functions
Mengdi Wang, Ethan X. Fang, Han Liu, 2017, Mathematical Programming on p. 419-449
Generalized alternating direction method of multipliers: new theoretical insights and applications
Ethan X. Fang, Bingsheng He, Han Liu, Xiaoming Yuan, 2015, Mathematical Programming Computation on p. 149-187
Adipocyte OGT governs diet-induced hyperphagia and obesity
Min Dian Li, Nicholas B. Vera, Yunfan Yang, Bichen Zhang, Weiming Ni, Enida Ziso-Qejvanaj, Sheng Ding, Kaisi Zhang, Ruonan Yin, Simeng Wang, Xu Zhou, Ethan X. Fang, Tian Xu, Derek M. Erion, Xiaoyong Yang, 2018, Nature Communications
Testing and confidence intervals for high dimensional proportional hazards models
Ethan X. Fang, Yang Ning, Han Liu, 2017, Journal of the Royal Statistical Society. Series B: Statistical Methodology on p. 1415-1437
Accelerating Stochastic Composition Optimization
Mengdi Wang, Ji Liu, Ethan X. Fang, 2017, Journal of Machine Learning Research on p. 1-23
Accelerating stochastic composition optimization
Mengdi Wang, Ji Liu, Ethan X. Fang, 2016, Advances in Neural Information Processing Systems on p. 1722-1730
Multilevel stochastic gradient methods for nested composition optimization
Shuoguang Yang, Mengdi Wang, Ethan X. Fang, 2019, SIAM Journal on Optimization on p. 616-659
Using a distributed SDP approach to solve simulated protein molecular conformation problems
Xingyuan Fang, Kim Chuan Toh, 2013, on p. 351-376
Inequality in treatment benefits: Can we determine if a new treatment benefits the many or the few?
Emily J. Huang, Ethan X. Fang, Daniel F. Hanley, Michael Rosenblum, 2017, Biostatistics on p. 308-324
Misspecified nonconvex statistical optimization for sparse phase retrieval
Zhuoran Yang, Lin F. Yang, Ethan X. Fang, Tuo Zhao, Zhaoran Wang, Matey Neykov, 2019, Mathematical Programming on p. 545-571