Ethan Xingyuang Fang

Assistant Professor of Statistics

Ethan Xingyuang Fang

Publication Tags

These publication tags are generated from the output of this researcher. Click any tag below to view other Huck researchers working on the same topic.

Chemical Analysis Randomized Trial Linear Programming Testing Estimator High Dimensional Optimization Gradient Methods Confidence Interval Optimization Problem Test Statistic Hazard Function O Glcnac Transferase Proportional Hazards Model Longitudinal Data Obesity Hypothesis Testing Fats Fairness Bandit Problems Numerical Experiment Robustness Type I Error Gradient Method Brain

Most Recent Publications

High-dimensional Interactions Detection with Sparse Principal Hessian Matrix

Cheng Yong Tang, Xingyuan Fang, Yuexiao Dong, Journal of Machine Learning Research

Michael Rosenblum, Xingyuan Fang, H Liu, Journal of Royal Statistical Society: Series B

Yue Liu, Ethan X. Fang, Junwei Lu, 2023, Operations Research on p. 202-223

Robust matrix estimations meet Frank–Wolfe algorithm

Naimin Jing, Ethan X. Fang, Cheng Yong Tang, 2023, Machine Learning

Ethan X. Fang, Zhaoran Wang, Lan Wang, 2022, Journal of the American Statistical Association

Yi Chen, Yining Wang, Ethan X. Fang, Zhaoran Wang, Runze Li, 2022, Journal of the American Statistical Association

Michael Rosenblum, Ethan X. Fang, Han Liu, 2020, Journal of the Royal Statistical Society. Series B: Statistical Methodology on p. 749-772

IMPLICIT BIAS OF GRADIENT DESCENT BASED ADVERSARIAL TRAINING ON SEPARABLE DATA

Yan Li, Huan Xu, Tuo Zhao, Ethan X. Fang, 2020,

Ethan X. Fang, Yang Ning, Runze Li, 2020, Annals of Statistics on p. 2622-2645

High-dimensional interactions detection with sparse principal hessian matrix

Cheng Yong Tang, Ethan X. Fang, Yuexiao Dong, 2020, Journal of Machine Learning Research

Most-Cited Papers

Mengdi Wang, Ethan X. Fang, Han Liu, 2017, Mathematical Programming on p. 419-449

Ethan X. Fang, Bingsheng He, Han Liu, Xiaoming Yuan, 2015, Mathematical Programming Computation on p. 149-187

Min Dian Li, Nicholas B. Vera, Yunfan Yang, Bichen Zhang, Weiming Ni, Enida Ziso-Qejvanaj, Sheng Ding, Kaisi Zhang, Ruonan Yin, Simeng Wang, Xu Zhou, Ethan X. Fang, Tian Xu, Derek M. Erion, Xiaoyong Yang, 2018, Nature Communications

Ethan X. Fang, Yang Ning, Han Liu, 2017, Journal of the Royal Statistical Society. Series B: Statistical Methodology on p. 1415-1437

Accelerating Stochastic Composition Optimization

Mengdi Wang, Ji Liu, Ethan X. Fang, 2017, Journal of Machine Learning Research on p. 1-23

Accelerating stochastic composition optimization

Mengdi Wang, Ji Liu, Ethan X. Fang, 2016, Advances in Neural Information Processing Systems on p. 1722-1730

Shuoguang Yang, Mengdi Wang, Ethan X. Fang, 2019, SIAM Journal on Optimization on p. 616-659

Using a distributed SDP approach to solve simulated protein molecular conformation problems

Xingyuan Fang, Kim Chuan Toh, 2013, on p. 351-376

Emily J. Huang, Ethan X. Fang, Daniel F. Hanley, Michael Rosenblum, 2017, Biostatistics on p. 308-324

Misspecified nonconvex statistical optimization for sparse phase retrieval

Zhuoran Yang, Lin F. Yang, Ethan X. Fang, Tuo Zhao, Zhaoran Wang, Matey Neykov, 2019, Mathematical Programming on p. 545-571