Campus Location
The curriculum of the Neuroscience Intercollege Graduate Degree Program is offered to students registered at the University Park (UP) or the Hershey Medical Center (HMC) campus. Information on Neuroscience faculty members, their research projects, and their campus location can be found at http://www.huck.psu.edu/education/neuroscience/faculty-and-research.

Academic Requirements
The Neuroscience Graduate curriculum consists of required courses and electives. In general, both campuses require courses in core areas of neuroscience such as neuroanatomy (NEURO 511/512), molecular and cellular neurobiology (NEURO 520), systems neuroscience (NEURO 521), and neural development (BIOL 426). All neuroscience graduate students are required to attend the program's neuroscience seminar series (NEURO 501), receive training in Ethics and the Responsible Conduct of Research, and conduct research supervised by a faculty member in the Neuroscience Graduate Program. For the PhD, students may take no more than 12 graded credits (A-F) of Thesis Research (NEURO 600); for the MS, students may take no more than 6 graded credits for their thesis research. Appendix 1 indicates a typical timeline of the required coursework in the neuroscience curriculum.

In addition to the required core courses in Appendix 2, students must take at least three elective credits during the first two years. Electives include 400 and 500 level courses that are approved by the Thesis Advisor and the Neuroscience Program Co-Director. Although not required, students are strongly encouraged to take one or more statistics courses that are relevant to their thesis research. A sample of elective courses taken by neuroscience students in recent years is shown in Appendix 3.

Full time student status requires at least nine credits each fall and spring semester before the comprehensive exam. After passing the comprehensive exam, students may register for Thesis Preparation (NEURO 601). Information about all Graduate School policies can be found at www.gradschool.psu.edu/current-students/, http://www.gradschool.psu.edu/current-students/student/, and in the Graduate Programs Bulletin: http://bulletins.psu.edu/bulletins/whitebook/index.cfm

Laboratory Rotations
Students are encouraged but are not required to take laboratory rotations. Typically, a student takes up to three 4-week lab rotations in the first Fall semester. Rotations provide students with an opportunity to participate in different projects and laboratory environments so that they can select a thesis project and advisor. Rotation advisors should provide students with clear expectations of their responsibilities during the rotation, and the student should meet regularly with the advisor to discuss the progress of the rotation. Students may choose any member of the Neuroscience Graduate Faculty for a rotation. If research in a specific lab matches your interest, you should make an appointment to discuss the rotation plan with the faculty member. The Co-Director will be available to provide guidance to narrow your choices.

Faculty Advisors
The Neuroscience Program Co-Director is the faculty advisor for students entering the program, and this person is available for specific questions about the program and for more general discussions of a student's progress. The Co-Director signs course registration forms during the first year, but after a student has selected a faculty thesis advisor, that faculty member assumes these responsibilities.

Thesis Advisor
Students should choose a thesis advisor and research laboratory by the end of their first academic year. A student may choose any lab supervised by a member of the Neuroscience Graduate Faculty provided the
faculty member agrees and has space and resources for the student's research. Students should have rotated with the faculty member and be familiar with the laboratory environment and its research mission. Guidelines for interactions between the thesis advisor and the graduate student appear in Appendix 4.

Responsible Conduct of Research

All neuroscience students must complete an online Responsible Conduct of Research (RCR) training course during their first year. The online course is offered through the CITI (Collaborative Institutional Training Initiative) Program. This online course supplements in-class, discussion-based RCR training provided in Ethics in the Life Sciences (MCIBS 591), a required 1-credit course taken during the second year. Together, these two courses satisfy RCR training requirements mandated by Penn State’s Scholarship and Research Integrity Program, an RCR initiative organized through the Office for Research Protections within the Office of the Vice President for Research.

First year students should register for the CITI-RCR course as soon as possible in the Fall semester. To register, go to the following webpage (http://www.research.psu.edu/training/sari/program) for instructions and a link to the CITI Program (http://www.citiprogram.org/). After selecting Pennsylvania State University as the participating institution, register for either the CITI Biomedical Science course (for most students) or the CITI Human Subject Research course. The latter is suitable for students who anticipate doing thesis research with human subject participants; it meets both general RCR requirements and specific RCR training required by the Institutional Review Board (IRB) for Human Participants Research at Penn State. Whichever course is chosen, students must work on their own to complete the course modules and pass the online quizzes. All modules must be completed by the end of the first Fall semester. A copy of the student’s Completion Report must be submitted to Ms. Jean Pierce, jep32@psu.edu, in the administrative office for the Neuroscience Program in 101 Life Sciences before January 15th.

Safety Training

Within the first semester of residence, all students are required to take/pass the laboratory safety and chemical waste disposal training sessions offered at the respective campus.

Research and Teaching Assistantships

Students with teaching or research graduate assistantships must be registered as full time students to maintain stipend eligibility. Assistantship appointments typically originate with the department of the faculty advisor. If no faculty advisor has been identified, students should consult with the Co-Director of the Neuroscience Graduate Program.

Student Presentations

After their first year, students are required to give an annual Power-Point presentation of their research to other students and faculty in the neurosciences. These presentations are intended to keep the faculty and fellow students apprised of progress in research and to provide practice in presentation. Students are also expected to use these opportunities to inform the doctoral committee of their research progress.

Academic Integrity Policy

According to Penn State’s Code of Conduct (Faculty Senate Policy 49-20), “all students should act with personal integrity, respect other students' dignity, rights and property, and help create and maintain an environment in which all can succeed through the fruits of their efforts.” Students should not “engage in or tolerate acts of falsification, misrepresentation or deception. Acts of dishonesty violate the ethical principles of the University community and compromise the worth of work completed by others”. Academic dishonesty, cheating, and plagiarism will not be tolerated in the Neuroscience Graduate Program and will result in disciplinary sanctions including dismissal from the program. University
Scholarship Policy
Students are required to have a minimum grade-point average of 3.0 for the doctoral candidacy examination, admission to the comprehensive examination, thesis defense, and graduation. One or more failing grades, a cumulative grade-point average below 3.0, or failing any of the required examinations are considered evidence of unsatisfactory scholarship and are grounds for dismissal from the University (see http://bulletins.psu.edu/bulletins/whitebook/index.cfm).

Candidacy Examination (end of first year)
The Candidacy Exam is taken by each first-year student after completing their spring semester. The student must have a minimum grade-point average of 3.0 to be eligible for the Candidacy Examination. Passing the Neuroscience Candidacy Exam establishes that the student has sufficient proficiency to continue pursuit of a graduate degree in the Neuroscience Program.

Format
The Candidacy Examination consists of written and oral components, both of which are administered by the Neuroscience Curriculum Committee. The written component assesses student knowledge of experimental design and the techniques used to address specific issues in the field of neuroscience. For this purpose, students are given a brief description of experimental problems and are asked to provide a general experimental plan to test specific hypotheses. Students can use materials from primary research papers or first-year course materials to write their answers. The oral exam, which includes topics in neuroscience covered in the first-year courses, including the material related to the written component, takes place within one week of the written exam.

Students are judged on their combined performance on the written and oral portions of the exam. In the event of failure, the Neuroscience Curriculum Committee determines whether the student may take another examination. If the second exam is failed, the student may be dismissed from the program.

Annual Evaluations (beginning in second year)
The student’s thesis advisor conducts an annual evaluation of overall performance. The evaluation will assess progress on thesis research, and will include constructive feedback and guidance aimed at helping students achieve their career goals. The Annual Student Evaluation Form, which is signed by the student and their advisor, is submitted to the Huck Graduate Office by June 15th each year starting in year 2.

Formation of a Doctoral Committee (in the second year)
In the second year, after passing the candidacy examination, the student will form a doctoral committee in consultation with their thesis advisor. The committee is chaired by the student's thesis advisor, except in rare circumstances. The doctoral committee provides general guidance for the student, and it administers both the Comprehensive Examination and the Thesis Defense. Committee members should be knowledgeable and interested in the general area of the proposed research.

The student should meet with the doctoral committee at least once each year. It is the student’s responsibility to organize these meetings. Committee meetings typically occur immediately after the student’s annual presentation in a formal seminar. Students are expected to document in writing for the doctoral committee their progress on thesis research and their future plans.
Composition of the Doctoral Thesis Committee
Consistent with Graduate School policy (http://bulletins.psu.edu/bulletins/whitebook/index.cfm), a Doctoral Thesis Committee in the Neuroscience Program should have:

- At least 4 members from the PSU Graduate Faculty.
- At least 2 members in the Neuroscience Program, both of which are in the PSU Graduate Faculty.
- At least one outside member in the PSU Graduate Faculty who is in a department different from the department of the thesis advisor. The outside member should represent a field outside the candidate’s major field to provide a broader disciplinary perspective and expertise.
- A person not affiliated with PSU may be a special member beyond the 4 members of the PSU Graduate Faculty upon approval of the Director of the Neuroscience program and Graduate Dean. A memo plus the individual's C.V. must be drafted with approval signature spaces for the Graduate Program Director plus Ms. Lori Anne Stania (Director, Graduate Enrollment).

Comprehensive Examination (end of second year)
The Comprehensive Exam is designed to test the student's ability to construct a detailed experimental plan that addresses a specific issue in neuroscience. This exam must be taken after the end of the second year and before the end of the fifth semester. The Comprehensive Examination is administered by the student's doctoral committee, and it consists of a written research proposal followed by an oral examination. The student must have at a minimum grade-point average of 3.0 to be eligible to take the Comprehensive Examination. In addition, the student must satisfy the English competence requirement and completed all required coursework. The oral examination must be formally scheduled by the Graduate School, which requires three weeks' notice.

Written Proposal
The proposal may be on any neuroscience topic, including the student's prospective thesis research. The proposal should follow the format of a NIH Predoctoral (F31) Fellowship application. The Specific Aims must be agreed upon by the student and his/her thesis advisor. After agreeing to the wording of the Specific Aims, the student's advisor should have as little to do with the proposal as possible because the work has to be original. The student is free to use published (or in press) papers that are available, but the logic, experimental design, and writing must belong entirely to the student. The written proposal must be completed and delivered to the members of the doctoral committee at least one week before the oral examination. The proposal does not need to correspond to the student’s intended dissertation research, although it usually does. The purpose of the exam is to test the student’s ability to develop a coherent research plan and support that plan with logical, literature-based arguments.

Oral Examination
The student must provide a formal presentation of the scientific background, rationale, and general approach of the research plan for each Specific Aim in the written proposal (approx. 30 – 45 minutes). During this presentation, the doctoral committee may interrogate the student on all aspects of the proposed experiments, predicted results, interpretation of data, and knowledge of background material. At least three persons on the doctoral committee must be physically present and no more than one person on the committee can participate by telephone. The student needs approval from 2/3 of the committee to pass the comprehensive exam.

Evaluation
Students are judged on their combined performance in the written and oral portions of the exam. A favorable vote of at least two-thirds of the committee is required for passing. In the event of failure, the examining committee will determine whether the student may take another examination.
Dissertation & Final Oral Examination

Completion of the requirements for a Ph.D. degree in the Neuroscience Intercollege Graduate Degree Program entails the preparation of a dissertation (written thesis), a final oral examination (thesis defense), and formal acceptance of the thesis by the student's doctoral committee.

Written Thesis Preparation

The Graduate School has strict guidelines for preparing and formatting the written thesis; see the Graduate Programs Bulletin (http://bulletins.psu.edu/bulletins/whitebook/index.cfm) and The Graduate School’s Thesis and Dissertation Information webpage (http://www.gradschool.psu.edu/current-students/etd/) for details. Extensive consultation with the thesis committee is strongly encouraged: it is expected that the student should distribute one or two drafts of the dissertation to committee members for review and critique prior to the defense. Students should provide a draft of the dissertation no less than 2 months before the thesis defense so that revisions can be incorporated and the dissertation is in final form for the oral defense. The student needs to submit paperwork 3-4 weeks prior to scheduled comprehensive exam and defense.

Activate Intent to Graduate

At the beginning of the semester in which the student wishes to graduate, they must Activate the Intent to Graduate. This is done through eLion (www.eLion.psu.edu) (or phone the Graduate Enrollment Office at 1-814-865-1795, if student is not in the PSU computer system)

Students must present their thesis in accordance with the Penn State University guidelines as described in the Thesis and Dissertation Guide available at http://www.gradsch.psu.edu/current/thesis.html or from the Thesis Office in 115 Kern Building (814/865-5448).

To facilitate submission of paperwork and scheduling of the oral examination, contact Jean Pierce 101 Life Sciences Bldg.; 814-867-0371; jep32@psu.edu

Oral Thesis Defense

The final oral examination consists of a public presentation of the thesis research, followed by a closed meeting with the student's doctoral committee. The examination should be scheduled after the student has fulfilled all other Graduate School requirements for the degree; three weeks' notice is required by the Graduate School for scheduling this examination. The final version of the dissertation should be delivered to the members of the doctoral committee two weeks before the defense. A favorable vote of at least two-thirds of the thesis committee is required for passing the final oral examination.

Consistent with Graduate School policy, the doctoral candidate and a minimum of three committee members must be physically present for the thesis defense. No more than one committee member may participate by telephone. Telephone or video-conference arrangements must be approved by the Dean of the Graduate School. A form letter is available for this special request.

Thesis Acceptance

This is the final step of the process: the thesis must be accepted, as indicated by the signatures of two-thirds of the doctoral committee and the Director of the Graduate Program in Neuroscience.

Thesis Submission and Exit Interview

Upon completion of the degree, students are to provide the Neuroscience Graduate Program with a copy of their thesis. The Huck Graduate Office sends an Exit Survey to each graduating student. Students will also meet with the Director of the Neuroscience Graduate Program or an appropriate representative to discuss their doctoral training at Penn State and provide suggestions for improving the program.
Additional Information

Internships (optional)
The internship experience is optional. All graduate students who are members of the Huck Institutes of the Life Sciences may participate in an external work internship that may be available in academia, industry, or government. Students can receive one credit on their transcript by enrolling in MCIBS 595 and a grade of R (satisfactory/passing) or U (unsatisfactory/failing). Non-traditional settings are also available. Students interested in this opportunity should initiate discussion early on with their advisor and Graduate Program Director to identify suitable internships and the best time for this experience (typically in summer). Contacts, positions, applications, course registration, course requirements, and grading are processed through the Eberly College of Science Cooperative Education Program (814-865-5000).

Teaching Opportunities
Some opportunities for teaching experience are available. Students interested in teaching should initiate discussion early on with their advisor and the Director of the Neuroscience Program to determine the best timing for this experience. The student will need to register for teaching assistant training (e.g. a departmental course such as BIOL 598A (Experiential Teaching in Biology) or the New Instructor Orientation Course offered by the Schreyer Institute for Teaching Excellence: http://www.schreyerinstitute.psu.edu/Events/NIO/). During the semester in which they teach and develop their teaching skills in a classroom setting, students register for MCIBS 602 and receive one credit on their transcript.

Individual Development Plan
Students should register at myIDP (http://myidp.sciencecareers.org/) and use the resources there to set their career goals. This website provides:

- Exercises to examine your skills, interests, and values
- A list of 20 scientific career paths with a prediction of which ones best fit your skills and interests
- A tool for setting strategic goals for the coming year, with optional reminders to keep you on track

Huck Institutes Awards

The Huck Institutes Travel Award
The Huck Institutes of the Life Sciences provide Travel Awards to Ph.D. students enrolled in all Huck graduate programs who have completed their comprehensive examinations, and who will give poster and/or oral presentations at domestic or international conferences. To apply for this travel award, submit a request form at https://home.huck.psu.edu/forms/on-line-travel-stipend-request-form. The application will be sent to the Chair for review and approval. The maximum award for domestic travel is $750, and the maximum award for international travel is $1,500. Students are only eligible to receive the award once during their study at Penn State.

The Huck Institutes Dissertation Research Award
This award provides students in the six Huck Institutes-supported graduate programs up to $5,000 towards their individual research projects after completing their comprehensive exam. The intent of this award is for the students to propose a unique research project that represents their original synthesis and extends beyond the research in their adviser’s lab.
Huck Graduate Student Advisory Committee
This Graduate Student Advisory Committee represents all graduate students in the Huck Institutes of the Life Sciences. Its mission is to promote graduate student interests, facilitate communication among students and faculty, and help guide students in their career plans. More information is available at: http://www.huck.psu.edu/content/graduate-programs/career_professional_development/graduate_student_advisor_committee

Career Development Resources
To provide graduate students with the resources necessary to be successful in obtaining and securing a satisfying and rewarding career, the Huck Institutes offer a variety of resources including seminars, conferences, and workshops. See the following website for more details: http://www.huck.psu.edu/content/graduate-programs/career_professional_development

Vacation and Sick Days – Leaves of Absence
In general, vacation time should not exceed a total of 10 days (2 weeks) per year, exclusive of the 11 designated University holidays. Days at scientific meetings or training conferences are not vacation time (extra days before or after the meeting would count as vacation). Students may take more than the regularly allocated vacation time in any given calendar year for special travel or activities if they have the consent of their research advisor and they take correspondingly fewer vacation days in the preceding and/or following years.
Students must inform their research advisor (or the Graduate Program Chair if a research advisor has not yet been assigned) of their vacation plans at least 15 days before the first day of their vacation. The student should submit their vacation request in writing and obtain written approval from their advisor (an email will suffice). While advisor/Program Chair will usually approve most reasonable requests, requests can be denied if there are circumstances that warrant such a denial. Such denials should not, however, impede a student from using all of their annual vacation time in a reasonable fashion.

These recommended guidelines are advisory and reflect those suggested by government agencies such as National Science Foundation and National Institutes of Health for training grant fellows. Students should consult with their advisor regarding any absences that affect other group members in the advisor’s lab. Common sense policies and procedures should apply. Note that vacation time should be planned to avoid interference with specific duties including teaching.

Competence in Written and Spoken English
The Graduate School requires that all PhD candidates demonstrate high-level competence in the English language, including reading, writing, and speaking. Competence in written and spoken English is assessed as part of the candidacy exam.

All entering international students are required to take the American English Oral Communicative Proficiency Test (AEOCPT) which is administered by the University’s Department of Applied Linguistics. Given at the beginning of fall and spring semesters, international students are required to pre-register for the AEOCPT. The test scores from the AEOCPT are posted on the University's Administrative Information System (AIS) computer. A score above 250 on the AEOCPT satisfies the Department’s requirement; students scoring under 250 must take courses to improve their spoken language and retake the test before being allowed to teach, as prescribed by the Graduate School.

Students who are required to enroll in English as a Second Language (ESL) must complete the ESL requirement by the end of the second semester. Students who fail this requirement may be terminated from the respective graduate program at the discretion of the Program Director.
Below is the course of action for the AEOCPT score ranges:

NR = No Restrictions. This person should be allowed to teach with no restrictions based on ability to communicate in English. \(\text{AEOCPT Score of 250-300}\)

WR = Take ESL 118G. This person should not be allowed to teach before completing and receiving a grade of "A" in ESL 118G - "American Oral English for ITA’s III." \(\text{AEOCPT Score of 230-249}\)

TC = Take ESL 117G. This person should not be allowed to teach before completing and receiving a grade of "A" in both ESL 117G - "American Oral English for ITA’s II" and ESL 118G - "American Oral English for ITA’s III." \(\text{AEOCPT Score of 200-229}\)

SL = Speaking/Listening. This person should enroll in ESL 115G - "American Oral English for ITA’s I" and receive a grade of "A" before taking ESL 117G and ESL 118G. \(\text{AEOCPT Score below 200}\)

Other Graduate Neuroscience Programs

MD-PhD Program

Students in the MD/PhD program who select the Neuroscience option at the University Park campus for their doctoral thesis research must satisfy requirements similar to traditional doctoral students in the Neuroscience Graduate Program. During their first two years in the Neuroscience Program, MD/PhD students are required to take the following core courses: Seminars in Neuroscience (NEURO 501 - 4 credits), Cellular and Molecular Neuroscience (NEURO 520), Systems Neuroscience (NEURO 521), and Ethics in the Life Sciences (MCIBS 591). Students in the MD/PhD program are expected to register for 9-12 credits each semester until the Comprehensive Exam has been passed. Beyond the core course listed above, MD/PhD students may take additional courses recommended by their advisor. Students can also register for Thesis Research (NEURO 600) to obtain a total of 9-12 credits per semester.

Masters (M.S.) Degree in Neuroscience

Masters students must have a minimum of 30 credits and a 3.0 overall GPA (see Graduate Degree Programs Bulletin \(\text{http://bulletins.psu.edu/bulletins/whitebook/index.cfm}\)). Of these 30 credits, at least 18 must be core courses in the Neuroscience Graduate Program. To qualify for the Masters degree, the following core courses are required: Seminars in Neuroscience (NEURO 501 - 6 credits), Comparative Neuroanatomy (NEURO 512 – 4 credits), Cellular and Molecular Neuroscience (NEURO 520 - 3 credits), Systems Neuroscience (NEURO 521 – 3 credits), and Ethics in the Life Sciences (MCIBS 591 - 1 credit). Credits from Internships and Lab Rotations (Neuro 596) count toward the 30 credits, but Teaching credits do not. If all course credits and requirements are met, students do not have to be registered for classes while writing and/or defending their research work.

A written thesis is required to obtain a Masters degree in the Neuroscience Graduate Program. The student must select a thesis committee (consult with the faculty advisor), present a thesis proposal, complete the work outlined in the proposal, write a thesis, and defend it. The Masters thesis committee must contain at least three graduate faculty members in the Neuroscience Graduate Program, and at least two within the student's major field.

Integrated Undergraduate Graduate (IUG) Program

Scholars in the Schreyer Honors College who participate in the IUG program and wish to obtain their Masters degree in the Neuroscience Graduate Program must fulfill specific requirements. In addition to satisfactory performance on a neuroscience-related thesis project approved by the Neuroscience Graduate Program Director, a minimum grade point average of 3.0 must be earned in the following core courses: Seminars in Neuroscience (NEURO 501- 2 credits), Comparative Neuroanatomy (NEURO 512 – 4 credits), Cellular and Molecular Neuroscience (NEURO 520 – 3 credits), and Systems Neuroscience (NEURO 521 – 3 credits).
Governance of the Graduate Program in Neuroscience
The Neuroscience Graduate Program is governed by the Neuroscience Advisory Committee (2015-2016):
David Vandenbergh, Ph.D., Chair; Professor, Biobehavioral Health;
Assoc Director, Penn State Institute of the Neurosciences
Kevin D. Alloway, Ph.D., Professor, Neural and Behavioral Sciences, and Biology
Co-Director, Penn State Neuroscience Graduate Program
Victoria Braithwaite, Ph.D., Professor, Fisheries & Biology
Rick Gilmore, Ph.D., Associate Professor, Psychology
Laura Klein, Ph.D., Associate Professor, Biobehavioral Health
Bernhard Luscher, Ph.D., Professor of Biology, Biochemistry and Molecular Biology, and Psychiatry
Ping Li, Ph.D., Professor, Psychology, Linguistics, and Information Science & Technology
Robert Sainburg, Ph.D., Professor, Kinesiology and Neurology
Steven Schiff, M.D. Ph.D., Brush Chair Professor of Engineering
Appendix 1: Typical Course Timeline in the Neuroscience Curriculum

<table>
<thead>
<tr>
<th>University Park Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1 Fall</td>
</tr>
<tr>
<td>NEURO 520 Cell & Molec. Neuroscience (3)</td>
</tr>
<tr>
<td>NEURO 512 Comparative Neuroanatomy (4)</td>
</tr>
<tr>
<td>NEURO 501 Seminars in Neuroscience (2)</td>
</tr>
<tr>
<td>Register for CITI on-line RCR course</td>
</tr>
<tr>
<td>Submit CITI RCR Course Completion Report</td>
</tr>
<tr>
<td>NEURO 596 Laboratory Rotations (1-3)</td>
</tr>
<tr>
<td>Electives</td>
</tr>
<tr>
<td>Year 1 Spring</td>
</tr>
<tr>
<td>NEURO 521. Systems Neuroscience (3)</td>
</tr>
<tr>
<td>NEURO 501 Seminars in Neuroscience (2)</td>
</tr>
<tr>
<td>BIOL 426 Developmental Neurobiology</td>
</tr>
<tr>
<td>Electives</td>
</tr>
<tr>
<td>Candidacy Examination: After Spring Semester</td>
</tr>
<tr>
<td>Year 2 Fall</td>
</tr>
<tr>
<td>NEURO 501 Seminars in Neuroscience (2)</td>
</tr>
<tr>
<td>MCIBS 591 Ethics in the Life Sciences (1)</td>
</tr>
<tr>
<td>NEURO 600 Thesis Research (2)</td>
</tr>
<tr>
<td>Electives</td>
</tr>
<tr>
<td>Year 2 Spring</td>
</tr>
<tr>
<td>NEURO 501 Seminars in Neuroscience (2)</td>
</tr>
<tr>
<td>NEURO 600. Thesis Research (6)</td>
</tr>
<tr>
<td>Electives</td>
</tr>
<tr>
<td>Comprehensive Exam: After Spring Semester</td>
</tr>
<tr>
<td>Years 3-5</td>
</tr>
<tr>
<td>NEURO 601 Thesis Preparation</td>
</tr>
<tr>
<td>MCIBS 595. Internship (1) (optional)</td>
</tr>
<tr>
<td>Thesis Defense</td>
</tr>
</tbody>
</table>
Appendix 2: Core Courses in the Neuroscience Graduate Program

BIOL 426 Developmental Neurobiology (3 credits)
This course provides an overview of developmental processes as they apply to the central nervous systems. From initial differentiation of neural tissue to aging, this course covers contemporary topics in neuroscience including synaptogenesis, axon guidance, neural stem cells, apoptosis, learning and memory, and Alzheimer's disease.

MCIBS 591 Ethics in the Life Sciences (1 credit)
Students examine integrity and misconduct in life sciences research, including issues of data collection, publication, authorship, and peer review. Students receive A-F quality grades.

NEURO 501 Seminars in Neuroscience (2 credits)
This course examines the research presented by invited speakers in the Neuroscience Seminar series. It has two components: (1) student presentations of the general research questions, techniques, and conclusions in contemporary research articles from the speaker's laboratory, and (2) attendance of the research seminar by the invited speaker and participation in the question and answer periods.

NEURO 512 Comparative Neuroanatomy (4 credits)
This course provides instruction on the functional and structural organization of the vertebrate central nervous system. In addition to lectures, students attend laboratory sessions devoted to human brain dissections, histologic sections of various vertebrate brains, and non-invasive magnetic resonance images.

NEURO 520 Cellular and Molecular Neuroscience (3 credits)
This course provides fundamental instruction on the structural and functional organization of neurons and glia, how neurons and synapses develop and are modified by activity, and how neurons communicate electrically and chemically with each other.

NEURO 521 Systems Neuroscience (3 credits)
This pro-seminar course covers the mechanisms of specific neural systems and their relationship to behavior and cognition. The course is subdivided into blocks (2-3 weeks) that are devoted to a variety of topics such as motor control, cortical processing, and depression and anxiety, among others. Discussion of each topic is led by a faculty member who has expertise on that topic.

NEURO 596 Independent Study: Laboratory Rotations (1-3 credits)
For students exploring potential Ph.D. projects and faculty advisors. Students receive a R (satisfactory/passing) or F (unsatisfactory/failing). Only R credits are counted for credit totals.

NEURO 600 THESIS RESEARCH (up to 12 credits)
For students who are matched with a faculty advisor but have not passed their comprehensive exams. Work in this course is graded (A-F).

NEURO 601 THESIS PREPARATION (0 credits)
For students who have passed their comprehensive exams. This course appears on the transcript but does not have any grade or credit associated with it.
Appendix 3: Sample of Elective Courses for the Neuroscience Graduate Program*

BBH 502 Health: Biobehavioral Perspectives
BIOL 467 Neurological Disease
BIOL 479 General Endocrinology
BIOL 404 Cellular Mechanisms of Vertebrate Physiology
BMB 401 Biochemistry
BMB 598G Molecular Biology of Animal Development
ESC 555 Neuroscience Data Analysis
ESC 597F Introduction to Neural Engineering: Fundamentals of Interfacing with Brain
ESC 597A (PHYS 597A) Neural Control Engineering
KINES 565 Neurophysiological Basis of Movement
KINES 497 The Neurobiology of Motor Rehabilitation in Stroke
PSY 511 Foundations of Social, Cognitive, and Affective Neuroscience
STAT 500 Applied Statistics
STAT 501 Regression Methods
STAT 502 Analysis of variance and design of Experiments
STAT 507 Epidemiologic Research Methods
STAT 509 Design and Analysis of Clinical Trials
STAT 513 Theory of Statistics I
STAT 514 Theory of Statistics II
STAT 540 Statistical Computing
STAT 555 Statistical Analysis of Genomics Data

(*) These courses are examples of courses that previous students have taken as electives, and are not meant to be exclusive. Elective courses may include 400 and 500 level courses if approved by the Advisor AND the Co-Director of the Neuroscience Graduate Program.
Appendix 4: Guidelines for Advisor-Student Interactions

Effective mentoring, open communication, and ethical professional conduct are essential for a high quality graduate education and research environment. Effective mentoring must be based on a commitment to provide every student access to supportive guidance on a range of professional, ethical and collegial issues. A productive mentorship requires that students are treated respectfully and fairly, and that the mentor serves as a role model - upholding the highest ethical standards. These guidelines embody many of the best practices used by the majority of our faculty here and elsewhere. They are intended to provide a heightened awareness of the need to consciously establish an effectual mentorship based on trust, courtesy, and shared expectations.

Faculty Advisors/Mentors will:

- provide an environment that is intellectually stimulating, emotionally supportive, safe, and free of harassment;
- be supportive, equitable, accessible, encouraging, and respectful;
- recognize and respect the cultural backgrounds of students;
- be sensitive to the power imbalance in the student-advisor relationship;
- avoid assigning duties or activities that are outside students' academic responsibilities or are detrimental to the timely completion of their degrees;
- respect students needs to allocate their time among competing demands, while maintaining timely progress towards their degree;
- advise graduate students on the selection of a thesis topic with realistic prospects for successful completion within an appropriate time frame;
- assist students on selecting and forming a thesis committee;
- set clear expectations and goals for students regarding their research and thesis;
- discuss policies and expectations for work hours, vacation time and health contingencies;
- meet regularly and individually with students to provide feedback on research progress and expectations (weekly meetings are recommended);
- provide students with training and oversight in the design of research projects, development of necessary skills, use of rigorous research techniques, and all other aspects of research;
- arrange for the on-campus supervision and advisement of graduate students during extended absences as well as regular contact (e.g. by phone) when possible;
- provide and discuss clear criteria for authorship at the beginning of all collaborative projects;
- encourage participation in professional meetings and try to secure funding for such activities;
- provide career advice, help with interview and application preparation, and write letters of recommendation in a timely manner;
- ensure students receive training in the skills needed for a successful career in their discipline, including oral and written communication and grant preparation;
- schedule at least one meeting each semester to discuss topics other than research, like professional development, career objectives and opportunities, climate, laboratory personnel relations, etc;
- be a role model by acting in an ethical, professional, and courteous manner toward students, staff, and faculty.
Graduate Students will:
• acknowledge that they bear the primary responsibility for the successful completion of their degree;
• exercise the highest ethical standards in all aspects of their research, including collection, storage, analysis, and communication of research data;
• complete to the best of their abilities all tasks assigned by the program, including teaching duties;
• be informed about regulations and policies governing graduate studies at the program and graduate school levels and take responsibility for meeting program and graduate school deadlines;
• set up meetings with their mentor and communicate regularly with their thesis committees;
• prepare progress reports and request feedback from their full committee annually;
• be considerate of time constraints and other demands imposed on faculty and staff;
• take an active role in identifying and pursuing professional development opportunities;
• be proactive about improving their research skills, including written and oral presentation skills;
• inform faculty mentors of potential and or existing conflicts and work toward their resolution;
• seek mentoring and support resources beyond their faculty advisor, including other faculty mentors, peers, and organizations;
• consult outside help from graduate program chairs, ombudsmen, or other faculty if conflicts arise with your advisor;

• be aware that if they feel compelled to change advisors or research direction, they may have options and should consult with their program chair;
• always act in an ethical, professional, and courteous manner toward other students, staff, and faculty.

Programs will:
• provide students with information that includes policies, degree requirements, and resources;
• guide students through lab rotations (when applicable), assist students with selection of their advisor and resolution of student-advisor conflicts;
• provide students with contacts and resources for potential conflict resolution in addition to the Program Chair (e.g. ombudsperson, director of graduate studies);
• provide pedagogical training and regular assessment of the teaching activities;
• monitor graduate student progress towards their degrees and professional development, including mentoring meetings, committee meetings, exam completions and other benchmarks appropriate to their discipline;
• provide and monitor training in the ethical conduct of research;
• provide appropriate infrastructure to allow students to complete their education and research in a timely and productive manner;
• establish and communicate policies for emergencies and unplanned situations that may disrupt the work of students and/or faculty;
• encourage and monitor student and faculty adherence to these guidelines.

These Guidelines are endorsed by the Huck Institutes of the Life Sciences Graduate Education Office and were adapted from guidelines recommended by the Eberly College of Science Climate and Diversity Committee.

Date: 8/17/14
This publication is available in alternative media on request.

The Pennsylvania State University is committed to the policy that all persons shall have equal access to programs, facilities, admission, and employment without regard to personal characteristics not related to ability, performance, or qualifications as determined by University policy or by state or federal authorities. The Pennsylvania State University does not discriminate against any person because of age, ancestry, color, disability, or handicap, national origin, race, religious creed, sex, sexual orientation, or veteran status. Direct all inquiries regarding the nondiscrimination policy to the Affirmative Action Director, The Pennsylvania State University, 201 Willard Building, University Park, PA 16802-2801; tel. (814)863-0471; TDD (814) 865-3175.

Produced by the Huck Institutes of the Life Sciences U.Ed. RES 01-06